

# ANDHRA PRADESH STATE COUNCIL OF HIGHER EDUCATION

## **Programme: B.Sc. Honours Mathematics (Minor)**

## w.e.f. AY 2023-24

## **COURSE STRUCTURE**

| Year | Semester | Course | Title of the Course                                         | No. of Hrs<br>/Week | No. of<br>Credits |
|------|----------|--------|-------------------------------------------------------------|---------------------|-------------------|
| Ι    | II       | 1      | Differential Equations & Problem<br>Solving Sessions        | 5                   | 4                 |
| II   | III      | 2      | Group Theory &Problem Solving Sessions                      | 5                   | 4                 |
|      |          | 3      | Ring Theory & Problem Solving<br>Sessions                   | 5                   | 4                 |
|      | IV       | 4      | Introduction to Real Analysis &<br>Problem Solving Sessions | 5                   | 4                 |
| III  | V        | 5      | Linear Algebra &Problem Solving<br>Sessions                 | 5                   | 4                 |
|      |          | 6      | Vector Calculus & Problem<br>solving Sessions               | 5                   | 4                 |

# COMMON MODEL PAPER FOR ALL PAPERS:

# YOGI VEMANA UNIVERSITY B.A/B.Sc/B.Com DEGREE EXAMINATIONS MATHEMATICS

| Time: 3 Hrs                                | Max.marks:75 |
|--------------------------------------------|--------------|
| I. Answer any <u>FIVE</u> questions        | 5x5=25       |
| 1. From Unit – I of the syllabus           |              |
| 2. From Unit – I of the syllabus           |              |
| 3. From Unit – II of the syllabus          |              |
| 4. From Unit – II of the syllabus          |              |
| 5. From Unit – III of the syllabus         |              |
| 6. From Unit – III of the syllabus         |              |
| 7. From Unit – IV of the syllabus          |              |
| 8. From Unit – IV of the syllabus          |              |
| 9. From Unit – V of the syllabus           |              |
| 10. From Unit – V of the syllabus          |              |
| II. Answer ALL questions                   | 5x10=50      |
| [or] From Unit – I of the syllabus<br>12.  |              |
| 13.                                        |              |
| [or] From Unit – II of the syllabus<br>14. |              |
| 15.                                        |              |
| [or] From Unit – III of the syllabus 16.   |              |
|                                            |              |
| [or] From Unit – IV of the syllabus<br>18. |              |
| 19.                                        |              |
| [or] From Unit – v of the syllabus 20.     |              |

#### **SEMESTER-II**

#### **COURSE 1: DIFFERENTIAL EQUATIONS**

Theory

#### Credits: 4

5 hrs/week

## Unit – 1 Differential Equations of first order and first degree

Linear Differential Equations – Bernoulli's Equations - Exact Differential Equations –Integrating factors - Equations reducible to Exact Equations by Integrating Factors -

i) Inspection Method ii)  $\frac{1}{Mx + Ny}$  iii)  $\frac{1}{Mx - Ny}$ 

## Unit – 2 Differential Equations of first order but not of first degree

Equations solvable for p, Equations solvable for y, Equations solvable for x – Clairaut's equation - Orthogonal Trajectories: Cartesian and Polar forms.

## Unit – 3 Higher order linear differential equations

Solutions of homogeneous linear differential equations of order n with constant coefficients -Solutions of non-homogeneous linear differential equations with constant coefficients by means of polynomial operators

(i)  $Q(x) = e^{ax}$  (ii) Q(x) = Sin ax (or) Cos ax

#### Unit – 4 Higher order linear differential equations (continued.)

Solution to a non-homogeneous linear differential equation with constant coefficients P.I. of f(D)y = Q when  $Q = bx^k$ P.I. of f(D)y = Q when  $Q = e^{ax}V$ , where V is a function of x P.I. of f(D)y = Q when Q = xV, where V is a function of x

#### **Unit** – 5

## Higher order linear differential equations with non-constant coefficients

Linear differential Equations with non-constant coefficients; Cauchy-Euler Equation; Legendre Equation; Method of variation of parameters

## **Text Book**

Differential Equations and Their Applications by Zafar Ahsan, published by Prentice-Hall of India Pvt. Ltd, New Delhi-Second edition.

## **Reference Books**

- 1. Ordinary and Partial Differential Equations by Dr. M.D. Raisinghania, published by S. Chand &Company, New Delhi.
- 2. Differential Equations with applications and programs S. Balachandra Rao & HR Anuradha-Universities Press.
- 3. Differential Equations -Srinivas Vangala&Madhu Rajesh, published by Spectrum UniversityPress.

#### SEMESTER-III

## **COURSE 2: GROUP THEORY**

<u>Theory</u>

Credits: 4

5 hrs/week

# Unit – 1

Groups

Binary Operation – Algebraic structure – semi group - monoid – Group definition and elementary properties Finite and Infinite groups – examples – order of a group, Composition tables with examples.

## Unit-2

## **Sub Groups**

Complex Definition – Multiplication of two complexes Inverse of a complex-Subgroup definitionexamples-criterion for a complex to be a subgroups; Criterion for the product of two subgroups to be a subgroup-union and Intersection of subgroups. Coset Definition – properties of Cosets – Index of a subgroups of a finite groups – Lagrange's Theorem.

#### Unit – 3

## Normal Subgroups

Normal Subgroups: Definition of normal subgroup – proper and improper normal subgroup–Hamilton group- Criterion for a subgroup to be a normal subgroup – intersection of two normal subgroups Sub group of index 2 is a normal sub group

## Unit-4

## Homomorphisms

Quotient groups, Definition of homomorphism – Image of homomorphism elementary properties of homomorphism – Isomorphism – automorphism definitions and elementary properties–kernel of a homomorphism – fundamental theorem on Homomorphism and applications.

## **Unit** – 5

## Permutations and Cyclic Groups

Definition of permutation – permutation multiplication – Inverse of a permutation – cyclic permutations – transposition – even and odd permutations – Cayley's theorem.

Cyclic Groups - Definition of cyclic group – elementary properties – classification of cyclic groups.

## Activities

Seminar/ Quiz/ Assignments/ Applications of Group Theory to Real life Problem /Problem Solving Sessions.

## **Text Book**

Modern Algebra by A.R.Vasishtha and A.K.Vasishtha, KrishnaPrakashanMedia Pvt. Ltd., Meerut. **Reference Books** 

- 1. Abstract Algebra by J.B. Fraleigh, Published by Narosa publishing house.
- 2. Modern Algebra by M.L. Khanna, Jai Prakash and Co. Printing Press, Meerut
- 3. Rings and Linear Algebra by Pundir&Pundir, published by PragathiPrakashan

## **SEMESTER-IV**

## **COURSE 3: RING THEORY**

Theory

Credits: 4

5 hrs/week

## Unit – 1

## **Rings and Fields**

Definition of a ring and Examples –Basic properties – Boolean rings - Fields – Divisors of zero and Cancellation Laws– Integral Domains – Division ring - The Characteristic of a Ring, Integral domain and Field.

## **Unit** – 2

## **Sub-rings and Ideals**

Definition and examples of Subrings – Necessary and sufficient conditions for a subset to be a subring – Algebra of Subrings – left, right and two sided ideals – Algebra of ideals.

#### Unit - 3

## Principal ideals and Quotient rings

Definition of a Principal ideal ring(Domain) – Every field is a PID – The ring of integers is a PID – Example of a ring which is not a PIR – Cosets – Algebra of cosets – Quotient rings – Construction of composition tables for finite quotient rings of the ring Z of integers and the ring  $Z_n$  of integers modulo n.

## Unit–4

## **Homomorphism of Rings**

Homomorphism of Rings – Definition and Elementary properties – Kernel of a homomorphism – Isomorphism – Fundamental theorem of homomorphism of rings.

#### **Unit** – 5

#### **Rings of Polynomials**

Polynomials in an indeterminate – The Evaluation homomorphism - The Division Algorithm in F[x] –Irreducible Polynomials – Ideal Structure in F[x] – Uniqueness of Factorization F[x].

## Activities

Seminar/ Quiz/ Assignments/ Applications of ring theory concepts to Real life Problem /Problem Solving Sessions.

## **Text book**

Modern Algebra by A.R.Vasishta and A.K.Vasishta, Krishna Prakashan Media Pvt. Ltd. **Reference books** 

1. A First Course in Abstract Algebra by John. B. Farleigh, Narosa Publishing House.

2. Linear Algebra by Stephen. H. Friedberg and Others, Pearson Education India

#### **SEMESTER-IV**

## **COURSE 4: INTRODUCTION TO REAL ANALYSIS**

Theory

Credits: 4

5 hrs/week

Unit – 1

## **REALNUMBERS, REAL SEQUENCES**

The algebraic and order properties of R - Absolute value and Real line - Completeness property of R - Applications of supremum property - intervals. Sequences and their limits, Range and Boundedness of Sequences, Limit of a sequence and Convergent sequence. (**No question is to be set from this portion**).

#### **INFINITIE SERIES**

Introductiontoseries -convergenceofseries -Cauchy'sgeneralprincipleof convergencefor series tests for convergence of series - Series of non-negative terms - P-test - Cauchy'sn<sup>th</sup> roottest -D'-Alembert'sTest-AlternatingSeries–Leibnitz Test.

## Unit – 2

## **LIMIT & CONTINUITY**

Real valued Functions - Boundedness of a function - Limits of functions - Some extensions of the limit concept - Infinite Limits - Limits at infinity (**No question is to be set from this portion**).Continuous functions - Combinations of continuous functions - Continuous Functions on intervals - uniform continuity.

## Unit –3

## DIFFERENTIATION AND MEAN VALUE THEORMS

The derivability of a function at a point and on an interval - Derivability and continuity of a function -MeanvalueTheorems -Rolle'sTheorem,Lagrange's Theorem, Cauchy's Mean value Theorem

#### Unit – 4

## **RIEMANN INTEGRATION - I**

Riemann Integral - Riemann integral functions - Darboux theorem - Necessary and sufficient condition for R integrability

#### Unit – 5

#### **RIEMANN INTEGRATION - II**

Properties of integrable functions - Fundamental theorem of integral calculus - integral as the limit of a sum - Mean value Theorems.

#### Activities

Seminar/ Quiz/ Assignments/ Applications of Real Analysis to Real life Problem /Problem Solving Sessions.

#### TextBook

An Introduction to Real Analysis by Robert G.Bartle and Donlad R. Sherbert, John Wiley and sonsPvt. Ltd

#### ReferenceBooks

- 1. ElementsofRealAnalysis by ShanthiNarayan andDr.M.D.Raisinghania, S. Chand & Company Pvt. Ltd., New Delhi.
- 2. Principles of Mathematical Analysis by Walter Rudin, McGraw-Hill Ltd.

## SEMESTER-V

## **COURSE 5: LINEAR ALGEBRA**

Theory

Credits: 4

5 hrs/week

# UNIT – I

## Vector Spaces-I

Vector Spaces - General properties of vector spaces - n-dimensional Vectors - addition and scalar multiplication of Vectors - internal and external composition - Null space - Vector subspaces - Algebra of subspaces - Linear Sum of two subspaces - linear combination of Vectors- Linear span Linear independence and Linear dependence of Vectors.

## UNIT –II

## Vector Spaces-II

Basis of Vector space - Finite dimensional Vector spaces - basis extension - co-ordinates- Dimension of a Vector space - Dimension of a subspace - Quotient space and Dimension of Quotient space.

## UNIT –III

## **Linear Transformations**

Linear transformations - linear operators- Properties of L.T- sum and product of L.Ts - Algebra of Linear Operators - Range and null space of linear transformation - Rank and Nullity of linear transformations - Rank- Nullity Theorem.

## UNIT –IV

## Matrices – I

Matrices, Elementary Properties of Matrices, Rank of Matrix, Normal form, Echelon form, Inverse of a matrix by using elementary operations.

## UNIT –V

## Matrices – II

**Linear Equations:** System of Homogeneous and non homogeneous Linear Equations. Characteristic equations, Characteristic Values & Vectors of a square matrix, Cayley – Hamilton Theorem and problems.

## **Text Books**

1.Linear Algebra by J.N. Sharma and A.R. Vasishtha, published by Krishna Prakashan Media (P) Ltd.

2. Matrices by A.R. Vasishtha and A.K. Vasishtha published by Krishna Prakashan Media (P) Ltd.

## **Reference Books**

- 1. Linear Algebra by Stephen H. Friedberg et. al. published by Prentice Hall of India Pvt. Ltd. 4<sup>th</sup> Edition, 2007
- 2. Linear Algebra by Kenneth Hoffman and Ray Kunze, published by Pearson education low priced edition), New Delhi.
- 3. Matrices by Shanti Narayana, published by S.Chand Publications

## **SEMESTER-V**

## **COURSE 6: VECTOR CALCULUS**

Theory

Credits: 4

5 hrs/week

#### Unit–1 Multiple Integrals

Introduction, Double integrals, Evaluation of double integrals, Properties of double integrals.Region of integration, double integration in Polar Co-ordinates, change of order of integration. Triple integral, region of integration, Evaluation of triple integrals.

## Unit–2

## Vector Differentiation-I

Vector differentiation, ordinary derivatives of vectors, partial differentiation. Gradient of a scalar point function, Directional derivative, Angle between two surfaces.

Unit-3

**Vector differentiation -II** 

Divergence –Curl operators – Formulae involving these operators.

## Unit-4

## Vector integration

Line Integrals with examples - Surface Integral with examples - Volume integral with examples.

## Unit-5

## **Vector integration applications**

Gauss theorem and applications of Gauss theorem - Green's theorem in a plane and applications of Green's theorem - Stokes's theorem and applications of Stokes theorem.

## Activities

Seminar/ Quiz/ Assignments/ Applications of Vector calculus to Real life Problems /Problem Solving Sessions.

## **Text Book**

A text Book of Higher Engineering Mathematics by B.S.Grawal, Khanna Publishers, 43<sup>rd</sup> Edition **ReferenceBooks** 

- 1. Vector Calculus by P.C.Matthews, Springer Verlag publications.
- 2. Vector Analysis by Murray Spiegel, Schaum Publishing Company, NewYork

\*\*\*\*\*